346 research outputs found

    Ab initio prediction of magnetically dead layers in freestanding γ\gamma-Ce(111)

    Full text link
    It is well known that the surface of nonmagnetic α\alpha-Ce is magnetically ordered, i.e., γ\gamma-like. One then might conjecture, in agreement with previous theoretical predictions, that the γ\gamma-Ce may also exhibit at its surfaces even more strongly enhanced γ\gamma-like magnetic ordering. Nonetheless, our result shows that the (111)-surfaces of magnetic γ\gamma-Ce are neither spin nor orbitally polarized, i.e., α\alpha-like. Therefore, we predict, in contrast to the nonmagnetic α\alpha-phase which tends to produce magnetically ordered γ\gamma-like thin layers at its free surfaces, the magnetic γ\gamma-phase has a tendency to form α\alpha-like dead layers. This study, which explains the suppressed (promoted) surface magnetic moments of γ\gamma-Ce (α\alpha-Ce), shows that how nanoscale can reverse physical properties by going from bulk to the surface in isostructural α\alpha- and γ\gamma-phases of cerium. We predict using our freestanding surface results that a typical unreactive and non-diffusive substrate can dramatically influence the magnetic surface of cerium thin films in contrast to most of the uncorrelated thin films and strongly correlated transition metals. Our result implies that magnetic surface moments of α\alpha-Ce(111) can be suddenly disappeared by increasing lattice mismatch at the interface of a typical unreactive and non-diffusive substrate with cerium overlayers.Comment: 6 pages, 3 figures, 1 tabl

    Shrinkage performance of fly ash alkali-activated cement based binder mortars

    Get PDF
    Some authors reported that Alkali-activated Cement Based Binder (AACB) mortars can have much higher drying shrinkage than Portland cement based composites. Its worth remember that shrinkage performance is a very important property for reinforced concrete composites just because a high shrinkage performance is associated to cracking tendency that leads to future durability problems. Usually shrinkage is assessed under unrestrained conditions. However, the use of a restrained ellipse ring test is especially interesting for materials that will be used in restrained conditions like repair mortars. This paper provides results on restrained and unrestrained shrinkage performance of fly ash AACB mortars. The restrained shrinkage was assessed with an elliptical ring that provides a faster and more reliable assessment of the cracking potential than circular rings. The results show that the mixtures with lower sodium silicate content are associated to a lower unrestrained shrinkage. Mixtures with lower sodium silicate content showed reduced average crack width under restrained conditions. The results also show that the reduction of sodium silicate content delays the appearance of cracks and is also associated to lower crack width. The use of AACB mortars in restrained conditions requires the use of a reduced sodium silicate content or else the use of fibres to prevent crack appearance.Foundation for Science and Technology (FCT): IF/00706/2014-UM.2.15info:eu-repo/semantics/acceptedVersio

    Flow performance of hybrid cement based mortars

    Get PDF
    This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration. A mixture based on 80% fly ash, 10% calcium hydroxide and 10% waste glass showed the highest compressive strength. A compressive strength decrease was noticed concerning the use of the two admixtures that can due to the fact that those admixtures are not stable on high basic media. The authors would like to acknowledge the financial support of the Foundation for Science and Technology (FCT) in the frame of project IF/00706/2014-UM.2.15info:eu-repo/semantics/publishedVersio

    Short-term compressive strength of fly ash and waste glass alkali-activated cement based binder (AACB) mortars with two biopolymers

    Get PDF
    The Roadmap to a Resource Efficient Europe aims that by 2020, waste will be managed as a resource. Thus materials that have the ability for the reuse of several types of wastes, such as alkali-activated cement-based binders (AACBs), will merit special attention. Some wastes like fly ash deserve special attention because they are generated in high amounts and have a very low reuse rate. This paper reports experimental results regarding the influence of the mix design of fly ash and waste glass AACB mortars containing two different biopolymers (carrageenan and xanthan) on their short-term mechanical performance. Microstructure and cost analysis are also included. The results show that a mixture of 80% fly ash, 10% waste glass, and 10% calcium hydroxide activated with an alkaline activator has the highest compressive strength. The results also show that the mortars with minor biopolymer carrageenan content are associated with a relevant increase in compressive strength and that the use of 0.1% of carrageenan leads to optimum compressive strength in most mixtures. The use of xanthan shows no beneficial effects on the compressive strength of AACB mortars. Several mixtures with xanthan even show a reduction in the compressive strength.The authors would like to acknowledge the financial support of the Foundation for Science and Technology (FCT) in the frame of project IF/00706/2014-UM.2.15.info:eu-repo/semantics/acceptedVersio

    Experimental and numerical investigations on the flexural performance of geopolymers reinforced with short hybrid polymeric fibres

    Get PDF
    Geopolymers have much higher drying shrinkage than Portland cement based composites Shrinkage performance is an important property for reinforced concrete composites just because a high shrinkage performance is associated to cracking tendency that leads to future durability problems. This paper provides results experimental and numerical investigations of fly ash based geopolymeric mortars reinforced with short hybrid polymeric fibres (SHPF). The results show that SHPF improved the flexural performance, while reducing the compressive strength and flexural stiffness of geopolymeric mortars. The addition of 0.8% SHPF increased about two times the fracture energy and about 50% the tensile strength. The adopted constitutive model well-captured the flexural performance of the tested beams.Foundation for Science and Technologyinfo:eu-repo/semantics/publishedVersio

    Differential gene-expression of metallothionein 1M and 1G in response to zinc in sertoli TM4 cells

    Get PDF
    Background: Zinc (Zn) as an important trace element is essential for testicular development and spermatogenesis. Molecular mechanism of Zn action in the reproductive system may be related to metal binding low-molecular weight proteins, metallothioneins (MT). Our objective was to determine the effect of Zn on two important isoforms of MT, MT1M and MT1G genes expression on testicular sertoli cells. Methods: Cultured sertoli TM4 cells were exposed to different concentrations of Zn at different time points. Cellular uptake of Zn was tested using flame atomic absorption spectrometry. The cellular viability and gene expression were assessed by MTT and real-time PCR methods, respectively. Results: The treated cells resulted in higher Zn concentration and cellular viability. The expression of MT1M and MT1G genes in the treated cells were greater than those of the untreated cells (P<0.05). In the high dosage treated group (100 and 500 μM), Zn concentration and expression of MT1M and MT1G genes increased three h after treatment; MT1G gene expression increased more at sixth h. At 18th h of treatment, the expression of both genes especially MT1G, increased dramatically while Zn concentration decreased. Conclusion: Since the increase of MT1G mRNA was coincident with cellular Zn level, it seems that MT1G has a more prominent role than MT1M in the homeostasis of Zn. In addition, Zn at dosage of 50 μM (pharmacologic concentration) may protect cells by increasing the expression of MT genes at longer periods

    Thermal performance of resource-efficient geopolymeric mortars containing phase change materials

    Get PDF
    Energy efficiency is not only the most cost effective way to reduce emissions but also a way to improve competitiveness and create employment. This paper reports experimental results on the thermal performance of geopolymeric mortars containing different percentages of phase-change materials-PCMs. These materials have a twofold positive impact concerning eco-efficiency. On one hand, the mortars are based on industrial waste contributing for resource efficiency. And on the other hand, PCM based mortars have the capacity to enhance the thermal performance of the buildings. Five groups of alkali-activated based mortars with different PCM percentages were produced and placed on a panel within a small-scale prototype for thermal performance testing. The results show that the thermal conductivity of the mortars decreased with the increase in the percentage of the PCM. The results also show that the thermal performance of the PCM based mortars allowed for a stronger attenuation of the temperature amplitudes. Both for heating and cooling loads. The authors would like to acknowledge the financial support from the Foundation for Science and Technology (FCT) for the frame of research project with Ref. IF/00706/2014-UM.2.15 as well as C-TAC and ISISE research units.info:eu-repo/semantics/publishedVersio

    Focused Analysis of Exome Sequencing Data for Rare Germline Mutations in Familial and Sporadic Lung Cancer

    Get PDF
    AbstractIntroductionThe association between smoking-induced chronic obstructive pulmonary disease (COPD) and lung cancer (LC) is well documented. Recent genome-wide association studies (GWAS) have identified 28 susceptibility loci for LC, 10 for COPD, 32 for smoking behavior, and 63 for pulmonary function, totaling 107 nonoverlapping loci. Given that common variants have been found to be associated with LC in genome-wide association studies, exome sequencing of these high-priority regions has great potential to identify novel rare causal variants.MethodsTo search for disease-causing rare germline mutations, we used a variation of the extreme phenotype approach to select 48 patients with sporadic LC who reported histories of heavy smoking—37 of whom also exhibited carefully documented severe COPD (in whom smoking is considered the overwhelming determinant)—and 54 unique familial LC cases from families with at least three first-degree relatives with LC (who are likely enriched for genomic effects).ResultsBy focusing on exome profiles of the 107 target loci, we identified two key rare mutations. A heterozygous p.Arg696Cys variant in the coiled-coil domain containing 147 (CCDC147) gene at 10q25.1 was identified in one sporadic and two familial cases. The minor allele frequency (MAF) of this variant in the 1000 Genomes database is 0.0026. The p.Val26Met variant in the dopamine β-hydroxylase (DBH) gene at 9q34.2 was identified in two sporadic cases; the minor allele frequency of this mutation is 0.0034 according to the 1000 Genomes database. We also observed three suggestive rare mutations on 15q25.1: iron-responsive element binding protein neuronal 2 (IREB2); cholinergic receptor, nicotinic, alpha 5 (neuronal) (CHRNA5); and cholinergic receptor, nicotinic, beta 4 (CHRNB4).ConclusionsOur results demonstrated highly disruptive risk-conferring CCDC147 and DBH mutations

    Iridium(III) N-heterocyclic carbene complexes: an experimental and theoretical study of structural, spectroscopic, electrochemical and electrogenerated chemiluminescence properties

    Full text link
    Four cationic heteroleptic iridium(III) complexes have been prepared from methyl- or benzyl-substituted chelating imidazolylidene or benzimidazolylidene ligands using a Ag(I) transmetallation protocol. The synthesised iridium(III) complexes were characterised by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for three complexes were determined by single crystal X-ray diffraction. A combined theoretical and experimental investigation into the spectroscopic and electrochemical properties of the series was performed in order to gain understanding into the factors influencing photoluminescence and electrochemiluminescence efficiency for these complexes, with the results compared with those of similar NHC complexes of iridium and ruthenium. The N^C coordination mode in these complexes is thought to stabilise thermally accessible non-emissive states relative to the case with analogous complexes with C^C coordinated NHC ligands, resulting in low quantum yields. As a result of this and the instability of the oxidised and reduced forms of the complexes, the electrogenerated chemiluminescence intensities for the compounds are also low, despite favourable energetics. These studies provide valuable insights into the factors that must be considered when designing new NHC-based luminescent complexes
    corecore